


Time: 3hours

Answer any five questions All questions carry equal marks - - -

- 1. For a simply supported Beam of uniformly distributed load of Intensity P_o per unit length and a concentrated load P at centre, Find the Transverse deflection using Raleigh-Ritz method of Functional Evaluation and compare the result with exact Analytical solution. [12]
- Write a short notes on plane stress, plane strain and axi-symmetric problems. 2. a)
 - In a plane stress problem σ_x = 60 MPa, σ_y = 35 MPa, τ_{xy} = 50 MPa, E = 200 b) GPa, $\mu = 0.3$.

i) Determine strain component ε_z

- ii) If the problem is a case of plane strain case determine stress component σ_{z} .[12]
- Derive the Element Stiffness Matrix for a Truss bar element oriented arbitrarily in 3. a) a 2-D plane starting from fundamentals.
- Find the displacements, reaction forces and stresses induced in the axially loaded b) stepped bar shown in the Figure. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$. $A_1 = 50 \text{ mm}^2 A_2 = 30$ mm^2 . [12]

- 4. a) The nodal coordinates of the triangular element are 1 (1,1), 2 (4,2), 3 (3,5). At the interior point P, the x coordinate is 3.5 and N_1 is 0.4. Determine N_2 , N_3 and y coordinate at point P.
- b) Explain natural and simple natural coordinates. [12]
- 5. Derive the shape functions for the four noded quadrilateral isoparametric element and indicate the purpose for the computing its stiffness matrix. [12]

Contd....2

www.firstranker.com

::2::

- 6. a) List some disadvantages of using 3-D elements.
 - b) Explain the procedure to determine the stiffness matrix of a tetrahedral element.

[12]

- 7. a) Explain Mindlin's approximations for bending of plates.
 - b) Imagine that each side of a rectangular box is modeled by a mesh of that shell elements. Internal pressure is applied. Along the edges where the sides intersect, What DOF can probably be set to zero, and why?
- 8. a) State the difference between Material non-linearity and Geometric non-linearity
 - b) Describe Newton Raphson iteration technique for solving material non-linearity problems.
 [12]